Cargando…
Interpretable PID parameter tuning for control engineering using general dynamic neural networks: An extensive comparison
Modern automation systems largely rely on closed loop control, wherein a controller interacts with a controlled process via actions, based on observations. These systems are increasingly complex, yet most deployed controllers are linear Proportional-Integral-Derivative (PID) controllers. PID control...
Autores principales: | Günther, Johannes, Reichensdörfer, Elias, Pilarski, Patrick M., Diepold, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728174/ https://www.ncbi.nlm.nih.gov/pubmed/33301494 http://dx.doi.org/10.1371/journal.pone.0243320 |
Ejemplares similares
-
PID_TUNE: A PID Autotuning Software Tool on UNICOS CPC
por: Blanco Vinuela, Enrique, et al.
Publicado: (2015) -
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
por: Hernández-Alvarado, Rodrigo, et al.
Publicado: (2016) -
Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems
por: Joseph, Stephen Bassi, et al.
Publicado: (2022) -
Model-reference robust tuning of PID controllers
por: Alfaro, Victor M, et al.
Publicado: (2016) -
Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization
por: Odili, Julius Beneoluchi, et al.
Publicado: (2017)