Cargando…
In-depth characterization and comparison of the N-glycosylated proteome of two-dimensional- and three-dimensional-cultured breast cancer cells and xenografted tumors
Native intact N-glycopeptide analysis can provide access to the comprehensive characteristics of N-glycan occupancy, including N-glycosites, N-glycan compositions, and N-glycoproteins for complex samples. The sample pre-processing method used for the analysis of intact N-glycopeptides usually depend...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728280/ https://www.ncbi.nlm.nih.gov/pubmed/33301522 http://dx.doi.org/10.1371/journal.pone.0243789 |
Sumario: | Native intact N-glycopeptide analysis can provide access to the comprehensive characteristics of N-glycan occupancy, including N-glycosites, N-glycan compositions, and N-glycoproteins for complex samples. The sample pre-processing method used for the analysis of intact N-glycopeptides usually depends on the enrichment of low abundance N-glycopeptides from a tryptic peptide mixture using hydrophilic substances before LC-MS/MS detection. However, the number of identified intact N-glycopeptides remains inadequate to achieve an in-depth profile of the N-glycosylation landscape. Here, we optimized the sample preparation workflow prior to LC-MS/MS analysis by systematically comparing different analytical methods, including the use of different sources of trypsin, combinations of different proteases, and different enrichment materials. Finally, we found that the combination of Trypsin (B)/Lys-C digestion and zwitterionic HILIC (Zic-HILIC) enrichment significantly improved the mass spectrometric characterization of intact N-glycopeptides, increasing the number of identified intact N-glycopeptides and offering better analytical reproducibility. Furthermore, the optimized workflow was applied to the analysis of intact N-glycopeptides in two-dimensional (2D) and three-dimensional (3D)-cultured breast cancer cells in vitro and xenografted tumors in mice. These results indicated that the same breast cancer cells, when cultured in different microenvironments, can show different N-glycosylation patterns. This study also provides an interesting comparison of the N-glycoproteome of breast cancer cells cultured in different growth conditions, indicating the important role of N-glycosylated proteins in cancer cell growth and the choice of the cell culture model for studies in tumor biology and drug evaluation. |
---|