Cargando…
Thermodynamics and Mechanics of Thermal Spraying of Steel EN 10060 Substrate with NiCrBSi Alloy after Milling
The objective of this paper is to present a new way of identifying and predicting the relationship between thermodynamic and physical-mechanical parameters in the formation of a layer after spraying on a substrate with NiCrBSi alloy and its subsequent processing by milling. The milling of the spheri...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728325/ https://www.ncbi.nlm.nih.gov/pubmed/33255781 http://dx.doi.org/10.3390/ma13235344 |
Sumario: | The objective of this paper is to present a new way of identifying and predicting the relationship between thermodynamic and physical-mechanical parameters in the formation of a layer after spraying on a substrate with NiCrBSi alloy and its subsequent processing by milling. The milling of the spherical surface of the EN 10060 material after spraying was performed on the DMU 40 eVolinear linear milling centre. The experimental part of the article is focused on investigating the influence of cutting parameters when machining a selected combination of materials (substrate-coating: EN 10060 steel-NiCrBSi alloy). The experiment is based on the results of direct measurements of three basic cutting parameters, namely: cutting speed v(c) (m∙min(−1)), feed per tooth f(z) (mm), and the depth of cut a(p) (mm). The new distribution functions of selected cutting parameters were derived. The analytical results of the thermodynamic calculations performed on nickel-based alloy can be used for accurate predictions of the technological parameters of milling a spherical substrate made of EN 10060 steel after HVOF spraying, and also for both sample preparation and the subsequent production of high-quality coatings. |
---|