Cargando…
Tetracycline Removal by Activating Persulfate with Diatomite Loading of Fe and Ce
Persulfate (PS)-based oxidation technology is efficient in removing refractory organics from water. A novel diatomite (DIA) support Fe and Ce composite (Fe-Ce/DIA) was prepared for activating persulfate to degrade tetracycline in water. The Fe and Ce were uniformly loaded on DIA, and the total pore...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728345/ https://www.ncbi.nlm.nih.gov/pubmed/33255809 http://dx.doi.org/10.3390/molecules25235531 |
Sumario: | Persulfate (PS)-based oxidation technology is efficient in removing refractory organics from water. A novel diatomite (DIA) support Fe and Ce composite (Fe-Ce/DIA) was prepared for activating persulfate to degrade tetracycline in water. The Fe and Ce were uniformly loaded on DIA, and the total pore size of Fe-Ce/DIA was 6.99 × 10(−2) cm(3)/g, and the average pore size was 12.06 nm. Fe-Ce/DIA presented a good catalytic activity and 80% tetracycline was removed under the persulfate system. The Fe-Ce/DIA also had photocatalytic activity, and the corresponding tetracycline removal efficiency was 86% under UV irradiation. Fe-Ce/DIA exhibited less iron dissolution rate compared with Fe-DIA. The tetracycline degradation rate was enhanced when the temperature increased. The optimal tetracycline removal efficiency was obtained when the conditions were of persulfate 10 mM, Fe-Ce/DIA dosage 0.02 g/L, and tetracycline concentration 50 mg/L. In addition, Fe-Ce/DIA showed a wide pH application and good reusability and stability. |
---|