Cargando…
Parameter Identification of Cutting Forces in Crankshaft Grinding Using Artificial Neural Networks
The intensifying of the manufacturing process and increasing the efficiency of production planning of precise and non-rigid parts, mainly crankshafts, are the first-priority task in modern manufacturing. The use of various methods for controlling the cutting force under cylindrical infeed grinding a...
Autores principales: | Pavlenko, Ivan, Saga, Milan, Kuric, Ivan, Kotliar, Alexey, Basova, Yevheniia, Trojanowska, Justyna, Ivanov, Vitalii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728348/ https://www.ncbi.nlm.nih.gov/pubmed/33255880 http://dx.doi.org/10.3390/ma13235357 |
Ejemplares similares
-
Method for an Effective Selection of Tools and Cutting Conditions during Precise Turning of Non-Alloy Quality Steel C45
por: Ivchenko, Oleksandr, et al.
Publicado: (2022) -
Locating Chart Choice Based on the Decision-Making Approach
por: Ivanov, Vitalii, et al.
Publicado: (2022) -
A Magnetoelectric Automotive Crankshaft Position Sensor
por: Petrov, Roman, et al.
Publicado: (2020) -
Mapping Relation between Contour Error Components of Crankshaft Pin Journal and Axis Position Control Error of Oscillating Grinding Machine
por: Fang, Xiaoyan, et al.
Publicado: (2021) -
Evaluation of Model-Based Control of Reaction Forces at the Supports of Large-Size Crankshafts
por: Chybowski, Leszek, et al.
Publicado: (2020)