Cargando…
Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks
Predicting mutation-induced changes in protein thermodynamic stability (ΔΔG) is of great interest in protein engineering, variant interpretation, and protein biophysics. We introduce ThermoNet, a deep, 3D-convolutional neural network (3D-CNN) designed for structure-based prediction of ΔΔGs upon poin...
Autores principales: | Li, Bian, Yang, Yucheng T., Capra, John A., Gerstein, Mark B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728386/ https://www.ncbi.nlm.nih.gov/pubmed/33253214 http://dx.doi.org/10.1371/journal.pcbi.1008291 |
Ejemplares similares
-
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
por: Gokmen, Tayfun, et al.
Publicado: (2017) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
An Optimized Convolutional Neural Network for the 3D Point-Cloud Compression
por: Luo, Guoliang, et al.
Publicado: (2023) -
Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks
por: Dibaeinia, Payam, et al.
Publicado: (2021) -
CUPSAT: prediction of protein stability upon point mutations
por: Parthiban, Vijaya, et al.
Publicado: (2006)