Cargando…
Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization
INTRODUCTION: Hydrogen sulfide (H(2)S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). OBJECTIVES: We investigate whether H(2)S inhibits mineralization via abolishing inflammation. METHODS AND RESULTS: Ex...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728582/ https://www.ncbi.nlm.nih.gov/pubmed/33318875 http://dx.doi.org/10.1016/j.jare.2020.07.005 |
_version_ | 1783621304417517568 |
---|---|
author | Éva Sikura, Katalin Combi, Zsolt Potor, László Szerafin, Tamás Hendrik, Zoltán Méhes, Gábor Gergely, Péter Whiteman, Matthew Beke, Lívia Fürtös, Ibolya Balla, György Balla, József |
author_facet | Éva Sikura, Katalin Combi, Zsolt Potor, László Szerafin, Tamás Hendrik, Zoltán Méhes, Gábor Gergely, Péter Whiteman, Matthew Beke, Lívia Fürtös, Ibolya Balla, György Balla, József |
author_sort | Éva Sikura, Katalin |
collection | PubMed |
description | INTRODUCTION: Hydrogen sulfide (H(2)S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). OBJECTIVES: We investigate whether H(2)S inhibits mineralization via abolishing inflammation. METHODS AND RESULTS: Expression of pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased in patients with CAVD and in calcified aortic valve of ApoE-/- mice. Administration of H(2)(2)S releasing donor (4-methoxyphenyl piperidinylphosphinodithioc acid (AP72)) exhibited inhibition on both calcification and inflammation in aortic valve of apolipoprotein E knockout mice (ApoE-/-) mice is reflected by lowering IL-1β and TNF-α levels. Accordingly, AP72 prevented the accumulation of extracellular calcium deposition and decreased nuclear translocation of nuclear factor-κB (NF-κB) in human valvular interstitial cells (VIC). This was also accompanied by reduced cytokine response. Double-silencing of endogenous H(2)S producing enzymes, Cystathionine gamma-lyase (CSE) and Cystathionine beta-synthase (CBS) in VIC exerted enhanced mineralization and higher levels of IL-1β and TNF-α. Importantly, silencing NF-κB gene or its pharmacological inhibition prevented nuclear translocation of runt-related transcription factor 2 (Runx2) and subsequently the calcification of human VIC. Increased levels of NF-κB and Runx2 and their nuclear accumulation occurred in ApoE-/- mice with a high-fat diet. Administration of AP72 decreased the expression of NF-κB and prevented its nuclear translocation in VIC of ApoE-/- mice on a high-fat diet, and that was accompanied by a lowered pro-inflammatory cytokine level. Similarly, activation of Runx2 did not occur in VIC of ApoE-/- mice treated with H(2)S donor. Employing Stimulated Emission Depletion (STED) nanoscopy, a strong colocalization of NF-κB and Runx2 was detected during the progression of valvular calcification. CONCLUSIONS: Hydrogen sulfide inhibits inflammation and calcification of aortic valve. Our study suggests that the regulation of Runx2 by hydrogen sulfide (CSE/CBS) occurs via NF-κB establishing a link between inflammation and mineralization in vascular calcification. |
format | Online Article Text |
id | pubmed-7728582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77285822020-12-13 Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization Éva Sikura, Katalin Combi, Zsolt Potor, László Szerafin, Tamás Hendrik, Zoltán Méhes, Gábor Gergely, Péter Whiteman, Matthew Beke, Lívia Fürtös, Ibolya Balla, György Balla, József J Adv Res Article INTRODUCTION: Hydrogen sulfide (H(2)S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). OBJECTIVES: We investigate whether H(2)S inhibits mineralization via abolishing inflammation. METHODS AND RESULTS: Expression of pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased in patients with CAVD and in calcified aortic valve of ApoE-/- mice. Administration of H(2)(2)S releasing donor (4-methoxyphenyl piperidinylphosphinodithioc acid (AP72)) exhibited inhibition on both calcification and inflammation in aortic valve of apolipoprotein E knockout mice (ApoE-/-) mice is reflected by lowering IL-1β and TNF-α levels. Accordingly, AP72 prevented the accumulation of extracellular calcium deposition and decreased nuclear translocation of nuclear factor-κB (NF-κB) in human valvular interstitial cells (VIC). This was also accompanied by reduced cytokine response. Double-silencing of endogenous H(2)S producing enzymes, Cystathionine gamma-lyase (CSE) and Cystathionine beta-synthase (CBS) in VIC exerted enhanced mineralization and higher levels of IL-1β and TNF-α. Importantly, silencing NF-κB gene or its pharmacological inhibition prevented nuclear translocation of runt-related transcription factor 2 (Runx2) and subsequently the calcification of human VIC. Increased levels of NF-κB and Runx2 and their nuclear accumulation occurred in ApoE-/- mice with a high-fat diet. Administration of AP72 decreased the expression of NF-κB and prevented its nuclear translocation in VIC of ApoE-/- mice on a high-fat diet, and that was accompanied by a lowered pro-inflammatory cytokine level. Similarly, activation of Runx2 did not occur in VIC of ApoE-/- mice treated with H(2)S donor. Employing Stimulated Emission Depletion (STED) nanoscopy, a strong colocalization of NF-κB and Runx2 was detected during the progression of valvular calcification. CONCLUSIONS: Hydrogen sulfide inhibits inflammation and calcification of aortic valve. Our study suggests that the regulation of Runx2 by hydrogen sulfide (CSE/CBS) occurs via NF-κB establishing a link between inflammation and mineralization in vascular calcification. Elsevier 2020-07-21 /pmc/articles/PMC7728582/ /pubmed/33318875 http://dx.doi.org/10.1016/j.jare.2020.07.005 Text en © 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Éva Sikura, Katalin Combi, Zsolt Potor, László Szerafin, Tamás Hendrik, Zoltán Méhes, Gábor Gergely, Péter Whiteman, Matthew Beke, Lívia Fürtös, Ibolya Balla, György Balla, József Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title | Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title_full | Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title_fullStr | Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title_full_unstemmed | Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title_short | Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization |
title_sort | hydrogen sulfide inhibits aortic valve calcification in heart via regulating runx2 by nf-κb, a link between inflammation and mineralization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728582/ https://www.ncbi.nlm.nih.gov/pubmed/33318875 http://dx.doi.org/10.1016/j.jare.2020.07.005 |
work_keys_str_mv | AT evasikurakatalin hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT combizsolt hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT potorlaszlo hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT szerafintamas hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT hendrikzoltan hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT mehesgabor hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT gergelypeter hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT whitemanmatthew hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT bekelivia hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT furtosibolya hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT ballagyorgy hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization AT ballajozsef hydrogensulfideinhibitsaorticvalvecalcificationinheartviaregulatingrunx2bynfkbalinkbetweeninflammationandmineralization |