Cargando…
Geographic monitoring for early disease detection (GeoMEDD)
Identifying emergent patterns of coronavirus disease 2019 (COVID-19) at the local level presents a geographic challenge. The need is not only to integrate multiple data streams from different sources, scales, and cadences, but to also identify meaningful spatial patterns in these data, especially in...
Autores principales: | Curtis, Andrew, Ajayakumar, Jayakrishnan, Curtis, Jacqueline, Mihalik, Sarah, Purohit, Maulik, Scott, Zachary, Muisyo, James, Labadorf, James, Vijitakula, Sorapat, Yax, Justin, Goldberg, Daniel W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728804/ https://www.ncbi.nlm.nih.gov/pubmed/33303896 http://dx.doi.org/10.1038/s41598-020-78704-5 |
Ejemplares similares
-
The MEDD myth: the impact of pseudoscience on pain research and prescribing-guideline development
por: Fudin, Jeffrey, et al.
Publicado: (2016) -
The utility of Zip4 codes in spatial epidemiological analysis
por: Ajayakumar, Jayakrishnan, et al.
Publicado: (2023) -
Addressing the data guardian and geospatial scientist collaborator dilemma: how to share health records for spatial analysis while maintaining patient confidentiality
por: Ajayakumar, Jayakrishnan, et al.
Publicado: (2019) -
The Use of Geonarratives to Add Context to Fine Scale Geospatial Research
por: Ajayakumar, Jayakrishnan, et al.
Publicado: (2019) -
Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness
por: Curtis, Andrew J., et al.
Publicado: (2022)