Cargando…

Nano drug delivery systems in upper gastrointestinal cancer therapy

Upper gastrointestinal (GI) carcinomas are characterized as one of the deadliest cancer types with the highest recurrence rates. Their treatment is challenging due to late diagnosis, early metastasis formation, resistance to systemic therapy and complicated surgeries performed in poorly accessible l...

Descripción completa

Detalles Bibliográficos
Autores principales: Salapa, Julia, Bushman, Allison, Lowe, Kevin, Irudayaraj, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728832/
https://www.ncbi.nlm.nih.gov/pubmed/33301056
http://dx.doi.org/10.1186/s40580-020-00247-2
Descripción
Sumario:Upper gastrointestinal (GI) carcinomas are characterized as one of the deadliest cancer types with the highest recurrence rates. Their treatment is challenging due to late diagnosis, early metastasis formation, resistance to systemic therapy and complicated surgeries performed in poorly accessible locations. Current cancer medication face deficiencies such as high toxicity and systemic side-effects due to the non-specific distribution of the drug agent. Nanomedicine has the potential to offer sophisticated therapeutic possibilities through adjusted delivery systems. This review aims to provide an overview of novel approaches and perspectives on nanoparticle (NP) drug delivery systems for gastrointestinal carcinomas. Present regimen for the treatment of upper GI carcinomas are described prior to detailing various NP drug delivery formulations and their current and potential role in GI cancer theranostics with a specific emphasis on targeted nanodelivery systems. To date, only a handful of NP systems have met the standard of care requirements for GI carcinoma patients. However, an increasing number of studies provide evidence supporting NP-based diagnostic and therapeutic tools. Future development and strategic use of NP-based drug formulations will be a hallmark in the treatment of various cancers. This article seeks to highlight the exciting potential of novel NPs for targeted cancer therapy in GI carcinomas and thus provide motivation for further research in this field.