Cargando…
Radiomic Analysis of CT Predicts Tumor Response in Human Lung Cancer with Radiotherapy
PURPOSE: Radiomics features can be positioned to monitor changes throughout treatment. In this study, we evaluated machine learning for predicting tumor response by analyzing CT images of lung cancer patients treated with radiotherapy. EXPERIMENTAL DESIGN: For this retrospective study, screening or...
Autores principales: | Yan, Mengmeng, Wang, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728862/ https://www.ncbi.nlm.nih.gov/pubmed/33025167 http://dx.doi.org/10.1007/s10278-020-00385-3 |
Ejemplares similares
-
A radiomics model of predicting tumor volume change of patients with stage III non-small cell lung cancer after radiotherapy
por: Yan, Mengmeng, et al.
Publicado: (2021) -
Development of a Radiomics Prediction Model for Histological Type Diagnosis in Solitary Pulmonary Nodules: The Combination of CT and FDG PET
por: Yan, Mengmeng, et al.
Publicado: (2020) -
Optimising use of 4D-CT phase information for radiomics analysis in lung cancer patients treated with stereotactic body radiotherapy
por: Davey, Angela, et al.
Publicado: (2021) -
Radiomic analysis in contrast-enhanced CT: predict treatment response to chemoradiotherapy in esophageal carcinoma
por: Hou, Zhen, et al.
Publicado: (2017) -
Progression-Free Survival Prediction in Small Cell Lung Cancer Based on Radiomics Analysis of Contrast-Enhanced CT
por: Chen, Ningxin, et al.
Publicado: (2022)