Cargando…
Age separation dramatically reduces COVID-19 mortality rate in a computational model of a large population
COVID-19 pandemic has caused a global lockdown in many countries throughout the world. Faced with a new reality, and until a vaccine or efficient treatment is found, humanity must figure out ways to keep the economy going, on one hand, while keeping the population safe, on the other hand, especially...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729024/ https://www.ncbi.nlm.nih.gov/pubmed/33171068 http://dx.doi.org/10.1098/rsob.200213 |
Sumario: | COVID-19 pandemic has caused a global lockdown in many countries throughout the world. Faced with a new reality, and until a vaccine or efficient treatment is found, humanity must figure out ways to keep the economy going, on one hand, while keeping the population safe, on the other hand, especially those that are susceptible to this virus. Here, we use a Watts–Strogatz network simulation, with parameters that were drawn from what is already known about the virus, to explore five different scenarios of partial lockdown release in two geographical locations with different age distributions. We find that separating age groups by reducing interactions between them protects the general population and reduces mortality rates. Furthermore, the addition of new connections within the same age group to compensate for the lost connections outside the age group still has a strong beneficial influence and reduces the total death toll by about 62%. While complete isolation from society may be the most protective scenario for the elderly population, it would have an emotional and possibly cognitive impact that might outweigh its benefit. Therefore, we propose creating age-related social recommendations or even restrictions, thereby allowing social connections while still offering strong protection for the older population. |
---|