Cargando…
Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage
Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729455/ https://www.ncbi.nlm.nih.gov/pubmed/33271965 http://dx.doi.org/10.3390/ijms21239174 |
_version_ | 1783621462403317760 |
---|---|
author | Li, Hongbing Li, Yulin Ke, Qingbo Kwak, Sang-Soo Zhang, Suiqi Deng, Xiping |
author_facet | Li, Hongbing Li, Yulin Ke, Qingbo Kwak, Sang-Soo Zhang, Suiqi Deng, Xiping |
author_sort | Li, Hongbing |
collection | PubMed |
description | Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield. |
format | Online Article Text |
id | pubmed-7729455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77294552020-12-12 Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage Li, Hongbing Li, Yulin Ke, Qingbo Kwak, Sang-Soo Zhang, Suiqi Deng, Xiping Int J Mol Sci Article Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield. MDPI 2020-12-01 /pmc/articles/PMC7729455/ /pubmed/33271965 http://dx.doi.org/10.3390/ijms21239174 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Hongbing Li, Yulin Ke, Qingbo Kwak, Sang-Soo Zhang, Suiqi Deng, Xiping Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title | Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title_full | Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title_fullStr | Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title_full_unstemmed | Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title_short | Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage |
title_sort | physiological and differential proteomic analyses of imitation drought stress response in sorghum bicolor root at the seedling stage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729455/ https://www.ncbi.nlm.nih.gov/pubmed/33271965 http://dx.doi.org/10.3390/ijms21239174 |
work_keys_str_mv | AT lihongbing physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage AT liyulin physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage AT keqingbo physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage AT kwaksangsoo physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage AT zhangsuiqi physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage AT dengxiping physiologicalanddifferentialproteomicanalysesofimitationdroughtstressresponseinsorghumbicolorrootattheseedlingstage |