Cargando…
A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel
Austenitic stainless steel has high potential as nuclear and engineering materials, but it is often coarse grained and has relatively low yield strength, typically 200–400 MPa. We prepared a bulk nanocrystalline lanthanum-doped 304L austenitic stainless steel alloy by a novel technique that combines...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729461/ https://www.ncbi.nlm.nih.gov/pubmed/33260803 http://dx.doi.org/10.3390/ma13235382 |
Sumario: | Austenitic stainless steel has high potential as nuclear and engineering materials, but it is often coarse grained and has relatively low yield strength, typically 200–400 MPa. We prepared a bulk nanocrystalline lanthanum-doped 304L austenitic stainless steel alloy by a novel technique that combines mechanical alloying and high-pressure sintering. The achieved alloy has an average grain size of 30 ± 12 nm and contains a high density (~10(24) m(−3)) of lanthanum-enriched nanoprecipitates with an average particle size of approx. 4 nm, leading to strong grain boundary strengthening and dispersion strengthening effects, respectively. The yield strength of nano-grained and nano-precipitated stainless steel reaches 2.9 GPa, which well exceeds that of ultrafine-grained (100–1000 nm) and nano-grained (<100 nm) stainless steels prepared by other techniques developed in recent decades. The strategy to combine nano-grain strengthening and nanoprecipitation strengthening should be generally applicable to developing other ultra-strong metallic alloys. |
---|