Cargando…
Improving the Voltammetric Determination of Hg(II): A Comparison Between Ligand-Modified Glassy Carbon and Electrochemically Reduced Graphene Oxide Electrodes
A new thiosemicarbazone ligand was immobilized through a Cu(I)-catalyzed click reaction on the surface of glassy carbon (GC) and electrochemically reduced graphene oxide (GC-ERGO) electrodes grafted with phenylethynyl groups. Using the accumulation at open circuit followed by anodic stripping voltam...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729478/ https://www.ncbi.nlm.nih.gov/pubmed/33260790 http://dx.doi.org/10.3390/s20236799 |
Sumario: | A new thiosemicarbazone ligand was immobilized through a Cu(I)-catalyzed click reaction on the surface of glassy carbon (GC) and electrochemically reduced graphene oxide (GC-ERGO) electrodes grafted with phenylethynyl groups. Using the accumulation at open circuit followed by anodic stripping voltammetry, the modified electrodes showed a significant selectivity and sensibility for Hg(II) ions. A detection limit of 7 nM was achieved with the GC modified electrodes. Remarkably, GC-ERGO modified electrodes showed a significantly improved detection limit (0.8 nM), sensitivity, and linear range, which we attribute to an increased number of surface binding sites and better electron transfer properties. Both GC and GC-ERGO modified electrodes proved their applicability for the analysis of real water samples. |
---|