Cargando…

Effect of sPP Content on Electrical Tree Growth Characteristics in PP-Blended Cable Insulation

This paper aims at investigating the electrical tree characteristics of isotactic polypropylene (iPP)/syndiotactic polypropylene (sPP) blends for thermoplastic cable insulation. PP blended samples with sPP contents of 0, 5, 15, 30, and 45 wt% are prepared, and electrical treeing experiments are impl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Shuofan, Yu, Fan, Yang, Wei, Li, Zhonglei, Xing, Zhaoliang, Fan, Mingsheng, Han, Tao, Du, Boxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729507/
https://www.ncbi.nlm.nih.gov/pubmed/33255955
http://dx.doi.org/10.3390/ma13235360
Descripción
Sumario:This paper aims at investigating the electrical tree characteristics of isotactic polypropylene (iPP)/syndiotactic polypropylene (sPP) blends for thermoplastic cable insulation. PP blended samples with sPP contents of 0, 5, 15, 30, and 45 wt% are prepared, and electrical treeing experiments are implemented under alternating current (AC) voltage at 50, 70, and 90 °C. Experimental results show that with the incorporation of sPP increasing to 15 wt%, the inception time of electrical tree increases by 8.2%. The addition of sPP by 15% distinguishes an excellent performance in inhibiting electrical treeing, which benefits from the ability to promote the fractal dimension and lateral growth of branches. Further increase in sPP loading has a negative effect on the electrical treeing resistance of blended insulation. It is proved by DSC and POM that the addition of sPP promotes the heterogeneous crystallization the of PP matrix, resulting in an increasing density of interfacial regions between crystalline regions, which contains charge carrier traps. Charges injected from an electrode into a polymer are captured by deep traps at the interfacial regions, thus inhibiting the propagation of electrical tree. It is concluded that the modification of crystalline morphology by 15 wt% sPP addition has a great advantage in electrical treeing resistance for PP-based cable insulation.