Cargando…
A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition †
Smartphone-sensors-based human activity recognition is attracting increasing interest due to the popularization of smartphones. It is a difficult long-range temporal recognition problem, especially with large intraclass distances such as carrying smartphones at different locations and small intercla...
Autores principales: | Zhao, Beidi, Li, Shuai, Gao, Yanbo, Li, Chuankun, Li, Wanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729609/ https://www.ncbi.nlm.nih.gov/pubmed/33297370 http://dx.doi.org/10.3390/s20236984 |
Ejemplares similares
-
Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
por: Hong, Zhonghua, et al.
Publicado: (2021) -
Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN
por: Ma, Mengnan, et al.
Publicado: (2021) -
Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution
por: Wu, Binrong, et al.
Publicado: (2022) -
Long short-term memory RNN for biomedical named entity recognition
por: Lyu, Chen, et al.
Publicado: (2017) -
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
por: Jiang, Changhui, et al.
Publicado: (2018)