Cargando…

Study of Mechanical Properties and Durability of Alkali-Activated Coal Gangue-Slag Concrete

Herein, a new geopolymer is recognized as a potential alternative cementing material of ordinary Portland cement (OPC), which is used for reducing carbon emissions and efficiently recycling the waste. Therefore this paper mainly studied the alkali-activated coal gangue-slag concrete (ACSC) was prepa...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hongguang, Yang, Sen, Li, Weijian, Li, Zonghui, Fan, Jingchong, Shen, Zhengyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729631/
https://www.ncbi.nlm.nih.gov/pubmed/33297535
http://dx.doi.org/10.3390/ma13235576
Descripción
Sumario:Herein, a new geopolymer is recognized as a potential alternative cementing material of ordinary Portland cement (OPC), which is used for reducing carbon emissions and efficiently recycling the waste. Therefore this paper mainly studied the alkali-activated coal gangue-slag concrete (ACSC) was prepared by using the coal gangue-slag and Na(2)SiO(3) and NaOH complex activator. The ratio of coal gangue (calcined and uncalcined) coarse aggregate replacing the gravel was 0%, 30%, 50%, 70%, and 100%. The water and salt freeze-thaw resistance, compressive strength, chloride permeation, microstructure, performance mechanism, inner freeze-thaw damage distribution, and mechanics models of ACSC were investigated. Results show that ACSC displayed excellent early age compressive strength, and the compact degree and uniformity of structure were better compared with the ordinary Portland cement (OPC) when the coal gangue replacement rate was less than 50%. The ACSC demonstrated the best chloride penetration resistance under 30% uncalcined coal gangue content, which was less than 27.75% lower than that of using OPC. At the same number cycles, especially in the salt freezing, the calcined coal gangue had lowered advantages of improving resistance freeze-thaw damage resistance. Water and salt accumulative freeze-thaw damage mechanics models of ACSC were established by using the relative dynamic elasticity modulus. The exponential function model was superior to the power function model with better precision and relativity, and the models accurately reflected the freeze-thaw damage effect.