Cargando…

Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials

Achieving tunable physical properties is currently one of the most exciting research topics. In order to realize this goal, a medium that is responsive to external stimuli and can undergo a change in its physical property is required. Liquid crystal (LC) is a prominent candidate, as its physical and...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Min Jeong, Yoon, Dong Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729749/
https://www.ncbi.nlm.nih.gov/pubmed/33266312
http://dx.doi.org/10.3390/ma13235466
Descripción
Sumario:Achieving tunable physical properties is currently one of the most exciting research topics. In order to realize this goal, a medium that is responsive to external stimuli and can undergo a change in its physical property is required. Liquid crystal (LC) is a prominent candidate, as its physical and optical properties can be easily manipulated with various stimuli, such as surface anchoring, rubbing, geometric confinement, and external fields. Having broken away from the past devotion to obtaining a uniform domain of LCs, people are now putting significant efforts toward forming and manipulating ordered and oriented defect structures with a unique arrangement within. The complicated molecular order with tunability would benefit the interdisciplinary research fields of optics, physics, photonics, and materials science. In this review, the recent progress toward defect engineering in the nematic and smectic phases by controlling the surface environment and electric field and their combinational methods is introduced. We close the review with a discussion of the possible applications enabled using LC defect structures as switchable materials.