Cargando…
GhoMR: Multi-Receptive Lightweight Residual Modules for Hyperspectral Classification
In recent years, hyperspectral images (HSIs) have attained considerable attention in computer vision (CV) due to their wide utility in remote sensing. Unlike images with three or lesser channels, HSIs have a large number of spectral bands. Recent works demonstrate the use of modern deep learning bas...
Autores principales: | Das, Arijit, Saha, Indrajit, Scherer, Rafał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729750/ https://www.ncbi.nlm.nih.gov/pubmed/33260347 http://dx.doi.org/10.3390/s20236823 |
Ejemplares similares
-
A Novel Type V TA System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS
por: Wang, Xiaoxue, et al.
Publicado: (2012) -
Austrian Society for Hematology and Medical Oncology (OeGHO) spring meeting 2023
por: Wöll, Ewald
Publicado: (2023) -
CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
por: Zhang, Zhiwen, et al.
Publicado: (2022) -
Citations and metrics of journals discontinued from Scopus for publication concerns: the GhoS(t)copus Project
por: Cortegiani, Andrea, et al.
Publicado: (2020) -
Patient assessment and feasibility of treatment in older patients with cancer: results from the IN-GHO(®) Registry
por: Honecker, Friedemann, et al.
Publicado: (2021)