Cargando…
A Machining State-Based Approach to Tool Remaining Useful Life Adaptive Prediction
The traditional predictive model for remaining useful life predictions cannot achieve adaptiveness, which is one of the main problems of said predictions. This paper proposes a LightGBM-based Remaining useful life (RUL) prediction method which considers the process and machining state. Firstly, a mu...
Autores principales: | Li, Yiming, Meng, Xiangmin, Zhang, Zhongchao, Song, Guiqiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729808/ https://www.ncbi.nlm.nih.gov/pubmed/33291327 http://dx.doi.org/10.3390/s20236975 |
Ejemplares similares
-
Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning
por: Krupp, Lukas, et al.
Publicado: (2023) -
Data-driven remaining useful life prediction based on domain adaptation
por: Wen, Bin cheng, et al.
Publicado: (2021) -
A remaining useful life prediction method based on PSR-former
por: Zhang, Huang, et al.
Publicado: (2022) -
Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
por: Wang, Haitao, et al.
Publicado: (2022) -
Multi-Sensor Data Fusion for Remaining Useful Life Prediction of Machining Tools by IABC-BPNN in Dry Milling Operations
por: Liu, Min, et al.
Publicado: (2020)