Cargando…
Gait-Based Identification Using Deep Recurrent Neural Networks and Acceleration Patterns
This manuscript presents an approach to the challenge of biometric identification based on the acceleration patterns generated by a user while walking. The proposed approach uses the data captured by a smartphone’s accelerometer and gyroscope sensors while the users perform the gait activity and opt...
Autores principales: | Peinado-Contreras, Angel, Munoz-Organero, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729817/ https://www.ncbi.nlm.nih.gov/pubmed/33287142 http://dx.doi.org/10.3390/s20236900 |
Ejemplares similares
-
Using Recurrent Neural Networks to Compare Movement Patterns in ADHD and Normally Developing Children Based on Acceleration Signals from the Wrist and Ankle
por: Muñoz-Organero, Mario, et al.
Publicado: (2019) -
Automatic Extraction and Detection of Characteristic Movement Patterns in Children with ADHD Based on a Convolutional Neural Network (CNN) and Acceleration Images
por: Muñoz-Organero, Mario, et al.
Publicado: (2018) -
Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data
por: Munoz-Organero, Mario, et al.
Publicado: (2016) -
Detecting Steps Walking at very Low Speeds Combining Outlier Detection, Transition Matrices and Autoencoders from Acceleration Patterns
por: Muñoz-Organero, Mario, et al.
Publicado: (2017) -
Deep Physiological Model for Blood Glucose Prediction in T1DM Patients
por: Munoz-Organero, Mario
Publicado: (2020)