Cargando…
In Vitro Evaluation of Gentamicin or Vancomycin Containing Bone Graft Substitute in the Prevention of Orthopedic Implant-Related Infections
Antibiotic-loaded bone graft substitutes are attractive clinical options and have been used for years either for prophylaxis or therapy for periprosthetic and fracture-related infections. Calcium sulfate and hydroxyapatite can be combined in an injectable and moldable bone graft substitute that prov...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729858/ https://www.ncbi.nlm.nih.gov/pubmed/33291550 http://dx.doi.org/10.3390/ijms21239250 |
Sumario: | Antibiotic-loaded bone graft substitutes are attractive clinical options and have been used for years either for prophylaxis or therapy for periprosthetic and fracture-related infections. Calcium sulfate and hydroxyapatite can be combined in an injectable and moldable bone graft substitute that provides dead space management with local release of high concentrations of antibiotics in a one-stage approach. With the aim to test preventive strategies against bone infections, a commercial hydroxyapatite/calcium sulfate bone graft substitute containing either gentamicin or vancomycin was tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa, harboring different resistance determinants. The prevention of bacterial colonization and biofilm development by selected microorganisms was investigated along with the capability of the eluted antibiotics to select for antibiotic resistance. The addition of antibiotics drastically affected the ability of the selected strains to adhere to the tested compound. Furthermore, both the antibiotics eluted by the bone graft substitutes were able to negatively impair the biofilm maturation of all the staphylococcal strains. As expected, P. aeruginosa was significantly affected only by the gentamicin containing bone graft substitutes. Finally, the prolonged exposure to antibiotic-containing sulfate/hydroxyapatite discs did not lead to any stable or transient adaptations in either of the tested bacterial strains. No signs of the development of antibiotic resistance were found, which confirms the safety of this strategy for the prevention of infection in orthopedic surgery. |
---|