Cargando…
Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
[Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphe...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729890/ https://www.ncbi.nlm.nih.gov/pubmed/33166145 http://dx.doi.org/10.1021/acs.nanolett.0c03466 |
_version_ | 1783621560782815232 |
---|---|
author | Rizzo, Daniel J. Jessen, Bjarke S. Sun, Zhiyuan Ruta, Francesco L. Zhang, Jin Yan, Jia-Qiang Xian, Lede McLeod, Alexander S. Berkowitz, Michael E. Watanabe, Kenji Taniguchi, Takashi Nagler, Stephen E. Mandrus, David G. Rubio, Angel Fogler, Michael M. Millis, Andrew J. Hone, James C. Dean, Cory R. Basov, D. N. |
author_facet | Rizzo, Daniel J. Jessen, Bjarke S. Sun, Zhiyuan Ruta, Francesco L. Zhang, Jin Yan, Jia-Qiang Xian, Lede McLeod, Alexander S. Berkowitz, Michael E. Watanabe, Kenji Taniguchi, Takashi Nagler, Stephen E. Mandrus, David G. Rubio, Angel Fogler, Michael M. Millis, Andrew J. Hone, James C. Dean, Cory R. Basov, D. N. |
author_sort | Rizzo, Daniel J. |
collection | PubMed |
description | [Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphene/α-RuCl(3) interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl(3) at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: E(F) = 0.6 eV (n = 2.7 × 10(13) cm(–2)). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl(3) giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping. |
format | Online Article Text |
id | pubmed-7729890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77298902020-12-14 Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces Rizzo, Daniel J. Jessen, Bjarke S. Sun, Zhiyuan Ruta, Francesco L. Zhang, Jin Yan, Jia-Qiang Xian, Lede McLeod, Alexander S. Berkowitz, Michael E. Watanabe, Kenji Taniguchi, Takashi Nagler, Stephen E. Mandrus, David G. Rubio, Angel Fogler, Michael M. Millis, Andrew J. Hone, James C. Dean, Cory R. Basov, D. N. Nano Lett [Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphene/α-RuCl(3) interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl(3) at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: E(F) = 0.6 eV (n = 2.7 × 10(13) cm(–2)). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl(3) giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping. American Chemical Society 2020-11-09 2020-12-09 /pmc/articles/PMC7729890/ /pubmed/33166145 http://dx.doi.org/10.1021/acs.nanolett.0c03466 Text en © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Rizzo, Daniel J. Jessen, Bjarke S. Sun, Zhiyuan Ruta, Francesco L. Zhang, Jin Yan, Jia-Qiang Xian, Lede McLeod, Alexander S. Berkowitz, Michael E. Watanabe, Kenji Taniguchi, Takashi Nagler, Stephen E. Mandrus, David G. Rubio, Angel Fogler, Michael M. Millis, Andrew J. Hone, James C. Dean, Cory R. Basov, D. N. Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title | Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title_full | Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title_fullStr | Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title_full_unstemmed | Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title_short | Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces |
title_sort | charge-transfer plasmon polaritons at graphene/α-rucl(3) interfaces |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729890/ https://www.ncbi.nlm.nih.gov/pubmed/33166145 http://dx.doi.org/10.1021/acs.nanolett.0c03466 |
work_keys_str_mv | AT rizzodanielj chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT jessenbjarkes chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT sunzhiyuan chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT rutafrancescol chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT zhangjin chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT yanjiaqiang chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT xianlede chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT mcleodalexanders chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT berkowitzmichaele chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT watanabekenji chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT taniguchitakashi chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT naglerstephene chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT mandrusdavidg chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT rubioangel chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT foglermichaelm chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT millisandrewj chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT honejamesc chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT deancoryr chargetransferplasmonpolaritonsatgraphenearucl3interfaces AT basovdn chargetransferplasmonpolaritonsatgraphenearucl3interfaces |