Cargando…

Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces

[Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphe...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzo, Daniel J., Jessen, Bjarke S., Sun, Zhiyuan, Ruta, Francesco L., Zhang, Jin, Yan, Jia-Qiang, Xian, Lede, McLeod, Alexander S., Berkowitz, Michael E., Watanabe, Kenji, Taniguchi, Takashi, Nagler, Stephen E., Mandrus, David G., Rubio, Angel, Fogler, Michael M., Millis, Andrew J., Hone, James C., Dean, Cory R., Basov, D. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729890/
https://www.ncbi.nlm.nih.gov/pubmed/33166145
http://dx.doi.org/10.1021/acs.nanolett.0c03466
_version_ 1783621560782815232
author Rizzo, Daniel J.
Jessen, Bjarke S.
Sun, Zhiyuan
Ruta, Francesco L.
Zhang, Jin
Yan, Jia-Qiang
Xian, Lede
McLeod, Alexander S.
Berkowitz, Michael E.
Watanabe, Kenji
Taniguchi, Takashi
Nagler, Stephen E.
Mandrus, David G.
Rubio, Angel
Fogler, Michael M.
Millis, Andrew J.
Hone, James C.
Dean, Cory R.
Basov, D. N.
author_facet Rizzo, Daniel J.
Jessen, Bjarke S.
Sun, Zhiyuan
Ruta, Francesco L.
Zhang, Jin
Yan, Jia-Qiang
Xian, Lede
McLeod, Alexander S.
Berkowitz, Michael E.
Watanabe, Kenji
Taniguchi, Takashi
Nagler, Stephen E.
Mandrus, David G.
Rubio, Angel
Fogler, Michael M.
Millis, Andrew J.
Hone, James C.
Dean, Cory R.
Basov, D. N.
author_sort Rizzo, Daniel J.
collection PubMed
description [Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphene/α-RuCl(3) interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl(3) at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: E(F) = 0.6 eV (n = 2.7 × 10(13) cm(–2)). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl(3) giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping.
format Online
Article
Text
id pubmed-7729890
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-77298902020-12-14 Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces Rizzo, Daniel J. Jessen, Bjarke S. Sun, Zhiyuan Ruta, Francesco L. Zhang, Jin Yan, Jia-Qiang Xian, Lede McLeod, Alexander S. Berkowitz, Michael E. Watanabe, Kenji Taniguchi, Takashi Nagler, Stephen E. Mandrus, David G. Rubio, Angel Fogler, Michael M. Millis, Andrew J. Hone, James C. Dean, Cory R. Basov, D. N. Nano Lett [Image: see text] Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl(3), we are able to visualize and quantify massive charge transfer at graphene/α-RuCl(3) interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl(3) at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: E(F) = 0.6 eV (n = 2.7 × 10(13) cm(–2)). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl(3) giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping. American Chemical Society 2020-11-09 2020-12-09 /pmc/articles/PMC7729890/ /pubmed/33166145 http://dx.doi.org/10.1021/acs.nanolett.0c03466 Text en © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Rizzo, Daniel J.
Jessen, Bjarke S.
Sun, Zhiyuan
Ruta, Francesco L.
Zhang, Jin
Yan, Jia-Qiang
Xian, Lede
McLeod, Alexander S.
Berkowitz, Michael E.
Watanabe, Kenji
Taniguchi, Takashi
Nagler, Stephen E.
Mandrus, David G.
Rubio, Angel
Fogler, Michael M.
Millis, Andrew J.
Hone, James C.
Dean, Cory R.
Basov, D. N.
Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title_full Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title_fullStr Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title_full_unstemmed Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title_short Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl(3) Interfaces
title_sort charge-transfer plasmon polaritons at graphene/α-rucl(3) interfaces
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729890/
https://www.ncbi.nlm.nih.gov/pubmed/33166145
http://dx.doi.org/10.1021/acs.nanolett.0c03466
work_keys_str_mv AT rizzodanielj chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT jessenbjarkes chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT sunzhiyuan chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT rutafrancescol chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT zhangjin chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT yanjiaqiang chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT xianlede chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT mcleodalexanders chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT berkowitzmichaele chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT watanabekenji chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT taniguchitakashi chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT naglerstephene chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT mandrusdavidg chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT rubioangel chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT foglermichaelm chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT millisandrewj chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT honejamesc chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT deancoryr chargetransferplasmonpolaritonsatgraphenearucl3interfaces
AT basovdn chargetransferplasmonpolaritonsatgraphenearucl3interfaces