Cargando…
Design of a Scalable and Fast YOLO for Edge-Computing Devices
With the increase in research cases of the application of a convolutional neural network (CNN)-based object detection technology, studies on the light-weight CNN models that can be performed in real time on the edge-computing devices are also increasing. This paper proposed scalable convolutional bl...
Autores principales: | Han, Byung-Gil, Lee, Joon-Goo, Lim, Kil-Taek, Choi, Doo-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729998/ https://www.ncbi.nlm.nih.gov/pubmed/33260957 http://dx.doi.org/10.3390/s20236779 |
Ejemplares similares
-
PIS-YOLO: Real-Time Detection for Medical Mask Specification in an Edge Device
por: Zhao, Zuopeng, et al.
Publicado: (2022) -
Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge Computing
por: Ma, Ming-You, et al.
Publicado: (2023) -
Pushing the Scalability of RDF Engines on IoT Edge Devices †
por: Le-Tuan, Anh, et al.
Publicado: (2020) -
Automatic Detection Method of Dairy Cow Feeding Behaviour Based on YOLO Improved Model and Edge Computing
por: Yu, Zhenwei, et al.
Publicado: (2022) -
Optimal Service Provisioning for the Scalable Fog/Edge Computing Environment
por: Choi, Jonghwa, et al.
Publicado: (2021)