Cargando…
Hierarchical Spatial-Spectral Feature Extraction with Long Short Term Memory (LSTM) for Mineral Identification Using Hyperspectral Imagery
Deep learning models are widely employed in hyperspectral image processing to integrate both spatial features and spectral features, but the correlations between them are rarely taken into consideration. However, in hyperspectral mineral identification, not only the spectral and spatial features of...
Autores principales: | Zhao, Huijie, Deng, Kewang, Li, Na, Wang, Ziwei, Wei, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730013/ https://www.ncbi.nlm.nih.gov/pubmed/33266267 http://dx.doi.org/10.3390/s20236854 |
Ejemplares similares
-
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
A Combined Quantitative Evaluation Model for the Capability of Hyperspectral Imagery for Mineral Mapping
por: Li, Na, et al.
Publicado: (2019) -
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015) -
Spatially and Spectrally Concatenated Neural Networks for Efficient Lossless Compression of Hyperspectral Imagery
por: Jiang, Zhuocheng, et al.
Publicado: (2020) -
Linear Spatial Misregistration Detection and Correction Based on Spectral Unmixing for FAHI Hyperspectral Imagery
por: Zhang, Xiangyue, et al.
Publicado: (2022)