Cargando…
Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features
This study aims to enable effective breast ultrasound image classification by combining deep features with conventional handcrafted features to classify the tumors. In particular, the deep features are extracted from a pre-trained convolutional neural network model, namely the VGG19 model, at six di...
Autores principales: | Daoud, Mohammad I., Abdel-Rahman, Samir, Bdair, Tariq M., Al-Najar, Mahasen S., Al-Hawari, Feras H., Alazrai, Rami |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730057/ https://www.ncbi.nlm.nih.gov/pubmed/33265900 http://dx.doi.org/10.3390/s20236838 |
Ejemplares similares
-
A Fusion-Based Approach for Breast Ultrasound Image Classification Using Multiple-ROI Texture and Morphological Analyses
por: Daoud, Mohammad I., et al.
Publicado: (2016) -
An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images
por: Daoud, Mohammad I., et al.
Publicado: (2022) -
Deep Learning and Handcrafted Features for Virus Image Classification
por: Nanni, Loris, et al.
Publicado: (2020) -
On the Efficacy of Handcrafted and Deep Features for Seed Image Classification
por: Loddo, Andrea, et al.
Publicado: (2021) -
Methods to achieve effective web-based learning management modules: MyGJU versus Moodle
por: Al-Hawari, Feras, et al.
Publicado: (2021)