Cargando…
Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method
A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification...
Autores principales: | Nazeer, Hammad, Naseer, Noman, Mehboob, Aakif, Khan, Muhammad Jawad, Khan, Rayyan Azam, Khan, Umar Shahbaz, Ayaz, Yasar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730208/ https://www.ncbi.nlm.nih.gov/pubmed/33297516 http://dx.doi.org/10.3390/s20236995 |
Ejemplares similares
-
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022) -
Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks
por: Hamid, Huma, et al.
Publicado: (2022) -
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review
por: Khan, Haroon, et al.
Publicado: (2021) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017)