Cargando…
A Mathematical Investigation into the Design of Prefilters That Make Cameras More Colorimetric †
By placing a color filter in front of a camera we make new spectral sensitivities. The Luther-condition optimization solves for a color filter so that the camera’s filtered sensitivities are as close to being linearly related to the XYZ color matching functions (CMFs) as possible, that is, a filter...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730262/ https://www.ncbi.nlm.nih.gov/pubmed/33276453 http://dx.doi.org/10.3390/s20236882 |
Sumario: | By placing a color filter in front of a camera we make new spectral sensitivities. The Luther-condition optimization solves for a color filter so that the camera’s filtered sensitivities are as close to being linearly related to the XYZ color matching functions (CMFs) as possible, that is, a filter is found that makes the camera more colorimetric. Arguably, the more general Vora-Value approach solves for the filter that best matches all possible target spectral sensitivity sets (e.g., any linear combination of the XYZ CMFs). A concern that we investigate here is that the filters found by the Luther and Vora-Value optimizations are different from one another. In this paper, we unify the Luther and Vora-Value approaches to prefilter design. We prove that if the target of the Luther-condition optimization is an orthonormal basis—a special linear combination of the XYZ CMFs which are orthogonal and are in unit length—the discovered Luther-filter is also the filter that maximizes the Vora-Value. A key advantage of using the Luther-condition formulation to maximize the Vora-Value is that it is both simpler to implement and converges to its optimal answer more quickly. Experiments validate our method. |
---|