Cargando…
A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data
Human Activity Recognition (HAR) using embedded sensors in smartphones and smartwatch has gained popularity in extensive applications in health care monitoring of elderly people, security purpose, robotics, monitoring employees in the industry, and others. However, human behavior analysis using the...
Autores principales: | Ahmed Bhuiyan, Rasel, Ahmed, Nadeem, Amiruzzaman, Md, Islam, Md Rashedul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730353/ https://www.ncbi.nlm.nih.gov/pubmed/33297389 http://dx.doi.org/10.3390/s20236990 |
Ejemplares similares
-
Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model
por: Ahmed, Nadeem, et al.
Publicado: (2020) -
Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data
por: Huang, Emily J., et al.
Publicado: (2020) -
Basic Sensors in iOS: Programming the Accelerometer, Gyroscope, and More
por: Allan, Alasdair
Publicado: (2011) -
Daily motionless activities: A dataset with accelerometer, magnetometer, gyroscope, environment, and GPS data
por: Pires, Ivan Miguel, et al.
Publicado: (2022) -
Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data
por: Huang, Emily J., et al.
Publicado: (2022)