Cargando…
Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training
Using standard digital cameras in combination with deep learning (DL) for pose estimation is promising for the in-home and independent use of exercise games (exergames). We need to investigate to what extent such DL-based systems can provide satisfying accuracy on exergame relevant measures. Our stu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730529/ https://www.ncbi.nlm.nih.gov/pubmed/33291687 http://dx.doi.org/10.3390/s20236940 |
_version_ | 1783621704859254784 |
---|---|
author | Vonstad, Elise Klæbo Su, Xiaomeng Vereijken, Beatrix Bach, Kerstin Nilsen, Jan Harald |
author_facet | Vonstad, Elise Klæbo Su, Xiaomeng Vereijken, Beatrix Bach, Kerstin Nilsen, Jan Harald |
author_sort | Vonstad, Elise Klæbo |
collection | PubMed |
description | Using standard digital cameras in combination with deep learning (DL) for pose estimation is promising for the in-home and independent use of exercise games (exergames). We need to investigate to what extent such DL-based systems can provide satisfying accuracy on exergame relevant measures. Our study assesses temporal variation (i.e., variability) in body segment lengths, while using a Deep Learning image processing tool (DeepLabCut, DLC) on two-dimensional (2D) video. This variability is then compared with a gold-standard, marker-based three-dimensional Motion Capturing system (3DMoCap, Qualisys AB), and a 3D RGB-depth camera system (Kinect V2, Microsoft Inc). Simultaneous data were collected from all three systems, while participants (N = 12) played a custom balance training exergame. The pose estimation DLC-model is pre-trained on a large-scale dataset (ImageNet) and optimized with context-specific pose annotated images. Wilcoxon’s signed-rank test was performed in order to assess the statistical significance of the differences in variability between systems. The results showed that the DLC method performs comparably to the Kinect and, in some segments, even to the 3DMoCap gold standard system with regard to variability. These results are promising for making exergames more accessible and easier to use, thereby increasing their availability for in-home exercise. |
format | Online Article Text |
id | pubmed-7730529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77305292020-12-12 Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training Vonstad, Elise Klæbo Su, Xiaomeng Vereijken, Beatrix Bach, Kerstin Nilsen, Jan Harald Sensors (Basel) Article Using standard digital cameras in combination with deep learning (DL) for pose estimation is promising for the in-home and independent use of exercise games (exergames). We need to investigate to what extent such DL-based systems can provide satisfying accuracy on exergame relevant measures. Our study assesses temporal variation (i.e., variability) in body segment lengths, while using a Deep Learning image processing tool (DeepLabCut, DLC) on two-dimensional (2D) video. This variability is then compared with a gold-standard, marker-based three-dimensional Motion Capturing system (3DMoCap, Qualisys AB), and a 3D RGB-depth camera system (Kinect V2, Microsoft Inc). Simultaneous data were collected from all three systems, while participants (N = 12) played a custom balance training exergame. The pose estimation DLC-model is pre-trained on a large-scale dataset (ImageNet) and optimized with context-specific pose annotated images. Wilcoxon’s signed-rank test was performed in order to assess the statistical significance of the differences in variability between systems. The results showed that the DLC method performs comparably to the Kinect and, in some segments, even to the 3DMoCap gold standard system with regard to variability. These results are promising for making exergames more accessible and easier to use, thereby increasing their availability for in-home exercise. MDPI 2020-12-04 /pmc/articles/PMC7730529/ /pubmed/33291687 http://dx.doi.org/10.3390/s20236940 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vonstad, Elise Klæbo Su, Xiaomeng Vereijken, Beatrix Bach, Kerstin Nilsen, Jan Harald Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title | Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title_full | Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title_fullStr | Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title_full_unstemmed | Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title_short | Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training |
title_sort | comparison of a deep learning-based pose estimation system to marker-based and kinect systems in exergaming for balance training |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730529/ https://www.ncbi.nlm.nih.gov/pubmed/33291687 http://dx.doi.org/10.3390/s20236940 |
work_keys_str_mv | AT vonstadeliseklæbo comparisonofadeeplearningbasedposeestimationsystemtomarkerbasedandkinectsystemsinexergamingforbalancetraining AT suxiaomeng comparisonofadeeplearningbasedposeestimationsystemtomarkerbasedandkinectsystemsinexergamingforbalancetraining AT vereijkenbeatrix comparisonofadeeplearningbasedposeestimationsystemtomarkerbasedandkinectsystemsinexergamingforbalancetraining AT bachkerstin comparisonofadeeplearningbasedposeestimationsystemtomarkerbasedandkinectsystemsinexergamingforbalancetraining AT nilsenjanharald comparisonofadeeplearningbasedposeestimationsystemtomarkerbasedandkinectsystemsinexergamingforbalancetraining |