Cargando…
Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
Bearing elements are vital in induction motors; therefore, early fault detection of rolling-element bearings is essential in machine health monitoring. With the advantage of fault feature representation techniques of time–frequency domain for nonstationary signals and the advent of convolutional neu...
Autores principales: | Pham, Minh Tuan, Kim, Jong-Myon, Kim, Cheol Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730594/ https://www.ncbi.nlm.nih.gov/pubmed/33276483 http://dx.doi.org/10.3390/s20236886 |
Ejemplares similares
-
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017) -
Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection
por: Maliuk, Andrei S., et al.
Publicado: (2021) -
A Novel Hybrid Deep Learning Method for Fault Diagnosis of Rotating Machinery Based on Extended WDCNN and Long Short-Term Memory
por: Gao, Yangde, et al.
Publicado: (2021) -
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
por: Duong, Bach Phi, et al.
Publicado: (2018)