Cargando…
Real-Time Prediction of Joint Forces by Motion Capture and Machine Learning
Conventional biomechanical modelling approaches involve the solution of large systems of equations that encode the complex mathematical representation of human motion and skeletal structure. To improve stability and computational speed, being a common bottleneck in current approaches, we apply machi...
Autores principales: | Giarmatzis, Georgios, Zacharaki, Evangelia I., Moustakas, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730598/ https://www.ncbi.nlm.nih.gov/pubmed/33291594 http://dx.doi.org/10.3390/s20236933 |
Ejemplares similares
-
Real-Time Musculoskeletal Kinematics and Dynamics Analysis Using Marker- and IMU-Based Solutions in Rehabilitation
por: Stanev, Dimitar, et al.
Publicado: (2021) -
Deep CNN Sparse Coding for Real Time Inhaler Sounds Classification
por: Ntalianis, Vaggelis, et al.
Publicado: (2020) -
AVATREE: An open-source computational modelling framework modelling Anatomically Valid Airway TREE conformations
por: Nousias, Stavros, et al.
Publicado: (2020) -
An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data
por: Kokkotis, Christos, et al.
Publicado: (2022) -
Automatic single- and multi-label enzymatic function prediction by machine learning
por: Amidi, Shervine, et al.
Publicado: (2017)