Cargando…
ALS Point Cloud Classification by Integrating an Improved Fully Convolutional Network into Transfer Learning with Multi-Scale and Multi-View Deep Features
Airborne laser scanning (ALS) point cloud has been widely used in various fields, for it can acquire three-dimensional data with a high accuracy on a large scale. However, due to the fact that ALS data are discretely, irregularly distributed and contain noise, it is still a challenge to accurately i...
Autores principales: | Lei, Xiangda, Wang, Hongtao, Wang, Cheng, Zhao, Zongze, Miao, Jianqi, Tian, Puguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730625/ https://www.ncbi.nlm.nih.gov/pubmed/33291256 http://dx.doi.org/10.3390/s20236969 |
Ejemplares similares
-
3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network
por: Zhang, Le, et al.
Publicado: (2018) -
Multi-view classification with convolutional neural networks
por: Seeland, Marco, et al.
Publicado: (2021) -
Correction: Multi-view classification with convolutional neural networks
Publicado: (2021) -
Spatial Aggregation Net: Point Cloud Semantic Segmentation Based on Multi-Directional Convolution
por: Cai, Guorong, et al.
Publicado: (2019) -
Multi-View Laser Point Cloud Global Registration for a Single Object
por: Wang, Shuai, et al.
Publicado: (2018)