Cargando…
Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle
Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continua...
Autores principales: | Shieh, Jeng-Lun, Haq, Qazi Mazhar ul, Haq, Muhamad Amirul, Karam, Said, Chondro, Peter, Gao, De-Qin, Ruan, Shanq-Jang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730714/ https://www.ncbi.nlm.nih.gov/pubmed/33260864 http://dx.doi.org/10.3390/s20236777 |
Ejemplares similares
-
Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles
por: Mushtaq, Anum, et al.
Publicado: (2023) -
How to train a self-driving vehicle: On the added value (or lack thereof) of curriculum learning and replay buffers
por: Mahmoud, Sara, et al.
Publicado: (2023) -
Electrogastrography in Autonomous Vehicles—An Objective Method for Assessment of Motion Sickness in Simulated Driving Environments
por: Gruden, Timotej, et al.
Publicado: (2021) -
Replay
por: Gelatti, Luciane Cristina, et al.
Publicado: (2014) -
Benchmarking 2D Multi-Object Detection and Tracking Algorithms in Autonomous Vehicle Driving Scenarios
por: Gragnaniello, Diego, et al.
Publicado: (2023)