Cargando…
Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks
This article presents research results into the application of an artificial neural network (ANN) to determine coal’s sorption parameters, such as the maximal sorption capacity and effective diffusion coefficient. Determining these parameters is currently time-consuming, and requires specialized and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730821/ https://www.ncbi.nlm.nih.gov/pubmed/33260556 http://dx.doi.org/10.3390/ma13235422 |
_version_ | 1783621772568952832 |
---|---|
author | Skiba, Marta Młynarczuk, Mariusz |
author_facet | Skiba, Marta Młynarczuk, Mariusz |
author_sort | Skiba, Marta |
collection | PubMed |
description | This article presents research results into the application of an artificial neural network (ANN) to determine coal’s sorption parameters, such as the maximal sorption capacity and effective diffusion coefficient. Determining these parameters is currently time-consuming, and requires specialized and expensive equipment. The work was conducted with the use of feed-forward back-propagation networks (FNNs); it was aimed at estimating the values of the aforementioned parameters from information obtained through technical and densitometric analyses, as well as knowledge of the petrographic composition of the examined coal samples. Analyses showed significant compatibility between the values of the analyzed sorption parameters obtained with regressive neural models and the values of parameters determined with the gravimetric method using a sorption analyzer (prediction error for the best match was 6.1% and 0.2% for the effective diffusion coefficient and maximal sorption capacity, respectively). The established determination coefficients (0.982, 0.999) and the values of standard deviation ratios (below 0.1 in each case) confirmed very high prediction capacities of the adopted neural models. The research showed the great potential of the proposed method to describe the sorption properties of coal as a material that is a natural sorbent for methane and carbon dioxide. |
format | Online Article Text |
id | pubmed-7730821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77308212020-12-12 Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks Skiba, Marta Młynarczuk, Mariusz Materials (Basel) Article This article presents research results into the application of an artificial neural network (ANN) to determine coal’s sorption parameters, such as the maximal sorption capacity and effective diffusion coefficient. Determining these parameters is currently time-consuming, and requires specialized and expensive equipment. The work was conducted with the use of feed-forward back-propagation networks (FNNs); it was aimed at estimating the values of the aforementioned parameters from information obtained through technical and densitometric analyses, as well as knowledge of the petrographic composition of the examined coal samples. Analyses showed significant compatibility between the values of the analyzed sorption parameters obtained with regressive neural models and the values of parameters determined with the gravimetric method using a sorption analyzer (prediction error for the best match was 6.1% and 0.2% for the effective diffusion coefficient and maximal sorption capacity, respectively). The established determination coefficients (0.982, 0.999) and the values of standard deviation ratios (below 0.1 in each case) confirmed very high prediction capacities of the adopted neural models. The research showed the great potential of the proposed method to describe the sorption properties of coal as a material that is a natural sorbent for methane and carbon dioxide. MDPI 2020-11-28 /pmc/articles/PMC7730821/ /pubmed/33260556 http://dx.doi.org/10.3390/ma13235422 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Skiba, Marta Młynarczuk, Mariusz Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title | Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title_full | Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title_fullStr | Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title_full_unstemmed | Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title_short | Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks |
title_sort | estimation of coal’s sorption parameters using artificial neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730821/ https://www.ncbi.nlm.nih.gov/pubmed/33260556 http://dx.doi.org/10.3390/ma13235422 |
work_keys_str_mv | AT skibamarta estimationofcoalssorptionparametersusingartificialneuralnetworks AT młynarczukmariusz estimationofcoalssorptionparametersusingartificialneuralnetworks |