Cargando…

Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †

Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to...

Descripción completa

Detalles Bibliográficos
Autores principales: Froiz-Míguez, Iván, Lopez-Iturri, Peio, Fraga-Lamas, Paula, Celaya-Echarri, Mikel, Blanco-Novoa, Óscar, Azpilicueta, Leyre, Falcone, Francisco, Fernández-Caramés, Tiago M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730861/
https://www.ncbi.nlm.nih.gov/pubmed/33266243
http://dx.doi.org/10.3390/s20236865
_version_ 1783621781742944256
author Froiz-Míguez, Iván
Lopez-Iturri, Peio
Fraga-Lamas, Paula
Celaya-Echarri, Mikel
Blanco-Novoa, Óscar
Azpilicueta, Leyre
Falcone, Francisco
Fernández-Caramés, Tiago M.
author_facet Froiz-Míguez, Iván
Lopez-Iturri, Peio
Fraga-Lamas, Paula
Celaya-Echarri, Mikel
Blanco-Novoa, Óscar
Azpilicueta, Leyre
Falcone, Francisco
Fernández-Caramés, Tiago M.
author_sort Froiz-Míguez, Iván
collection PubMed
description Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.
format Online
Article
Text
id pubmed-7730861
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77308612020-12-12 Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes † Froiz-Míguez, Iván Lopez-Iturri, Peio Fraga-Lamas, Paula Celaya-Echarri, Mikel Blanco-Novoa, Óscar Azpilicueta, Leyre Falcone, Francisco Fernández-Caramés, Tiago M. Sensors (Basel) Article Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption. MDPI 2020-11-30 /pmc/articles/PMC7730861/ /pubmed/33266243 http://dx.doi.org/10.3390/s20236865 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Froiz-Míguez, Iván
Lopez-Iturri, Peio
Fraga-Lamas, Paula
Celaya-Echarri, Mikel
Blanco-Novoa, Óscar
Azpilicueta, Leyre
Falcone, Francisco
Fernández-Caramés, Tiago M.
Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title_full Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title_fullStr Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title_full_unstemmed Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title_short Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes †
title_sort design, implementation, and empirical validation of an iot smart irrigation system for fog computing applications based on lora and lorawan sensor nodes †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730861/
https://www.ncbi.nlm.nih.gov/pubmed/33266243
http://dx.doi.org/10.3390/s20236865
work_keys_str_mv AT froizmiguezivan designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT lopeziturripeio designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT fragalamaspaula designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT celayaecharrimikel designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT blanconovoaoscar designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT azpilicuetaleyre designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT falconefrancisco designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes
AT fernandezcaramestiagom designimplementationandempiricalvalidationofaniotsmartirrigationsystemforfogcomputingapplicationsbasedonloraandlorawansensornodes