Cargando…
Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements
The purpose of the study was to test the usefulness of deep learning artificial neural networks and statistical modeling in predicting the strength of bone cements with defects. The defects are related to the introduction of admixtures, such as blood or saline, as contaminants into the cement at the...
Autores principales: | Machrowska, Anna, Szabelski, Jakub, Karpiński, Robert, Krakowski, Przemysław, Jonak, Józef, Jonak, Kamil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731130/ https://www.ncbi.nlm.nih.gov/pubmed/33260793 http://dx.doi.org/10.3390/ma13235419 |
Ejemplares similares
-
The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength
por: Szabelski, Jakub, et al.
Publicado: (2021) -
Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity
por: Karpiński, Robert, et al.
Publicado: (2020) -
Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements
por: Karpiński, Robert, et al.
Publicado: (2022) -
Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements
por: Szabelski, Jakub, et al.
Publicado: (2022) -
Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint
por: Karpiński, Robert, et al.
Publicado: (2022)