Cargando…
LPCF: Robust Correlation Tracking via Locality Preserving Tracking Validation
In visual tracking, the tracking model must be updated online, which often leads to undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination approach, which mitig...
Autores principales: | Zhou, Yixuan, Zhang, Weimin, Shi, Yongliang, Wang, Ziyu, Li, Fangxing, Huang, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731162/ https://www.ncbi.nlm.nih.gov/pubmed/33266108 http://dx.doi.org/10.3390/s20236853 |
Ejemplares similares
-
Track-to-Track Association for Intelligent Vehicles by Preserving Local Track Geometry
por: Zou, Ke, et al.
Publicado: (2020) -
UAPF: A UWB Aided Particle Filter Localization For Scenarios with Few Features
por: Wang, Yang, et al.
Publicado: (2020) -
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
por: Xu, Lingyun, et al.
Publicado: (2016) -
Learning Local–Global Multiple Correlation Filters for Robust Visual Tracking with Kalman Filter Redetection
por: Zhang, Jianming, et al.
Publicado: (2021) -
Robust Event-Based Object Tracking Combining Correlation Filter and CNN Representation
por: Li, Hongmin, et al.
Publicado: (2019)