Cargando…
Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption
Additive manufacturing is a key technology required to realize the production of a personalized bone substitute that exactly meets a patient’s need and fills a patient-specific bone defect. Additive manufacturing can optimize the inner architecture of the scaffold for osteoconduction, allowing fast...
Autores principales: | Ghayor, Chafik, Chen, Tse-Hsiang, Bhattacharya, Indranil, Özcan, Mutlu, Weber, Franz E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731226/ https://www.ncbi.nlm.nih.gov/pubmed/33291724 http://dx.doi.org/10.3390/ijms21239270 |
Ejemplares similares
-
3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption
por: Ghayor, Chafik, et al.
Publicado: (2022) -
Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distance
por: Guerrero, Julien, et al.
Publicado: (2022) -
Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited
por: Ghayor, Chafik, et al.
Publicado: (2018) -
Three-Dimensional Printed Hydroxyapatite Bone Substitutes Designed by a Novel Periodic Minimal Surface Algorithm Are Highly Osteoconductive
por: Maevskaia, Ekaterina, et al.
Publicado: (2023) -
Evaluation of Osteoconduction of a Synthetic Hydroxyapatite/β-Tricalcium Phosphate Block Fixed in Rabbit Mandibles
por: Pires, Luis Carlos de Almeida, et al.
Publicado: (2020)