Cargando…

Can Serum Nitrosoproteome Predict Longevity of Aged Women?

Aging is characterized by increase in reactive oxygen (ROS) and nitrogen (RNS) species, key factors of cardiac failure and disuse-induced muscle atrophy. This study focused on serum nitroproteome as a trait of longevity by adopting two complementary gel-based techniques: two-dimensional differential...

Descripción completa

Detalles Bibliográficos
Autores principales: Capitanio, Daniele, Barbacini, Pietro, Arosio, Beatrice, Guerini, Franca Rosa, Torretta, Enrica, Trecate, Fabio, Cesari, Matteo, Mari, Daniela, Clerici, Mario, Gelfi, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731247/
https://www.ncbi.nlm.nih.gov/pubmed/33260845
http://dx.doi.org/10.3390/ijms21239009
Descripción
Sumario:Aging is characterized by increase in reactive oxygen (ROS) and nitrogen (RNS) species, key factors of cardiac failure and disuse-induced muscle atrophy. This study focused on serum nitroproteome as a trait of longevity by adopting two complementary gel-based techniques: two-dimensional differential in gel electrophoresis (2-D DIGE) and Nitro-DIGE coupled with mass spectrometry of albumin-depleted serum of aged (A, n = 15) and centenarian (C, n = 15) versus young females (Y, n = 15). Results indicate spots differently expressed in A and C compared to Y and spots changed in A vs. C. Nitro-DIGE revealed nitrosated protein spots in A and C compared to Y and spots changed in A vs. C only (p-value < 0.01). Nitro-proteoforms of alpha-1-antitripsin (SERPINA1), alpha-1-antichimotripsin (SERPINA3), ceruloplasmin (CP), 13 proteoforms of haptoglobin (HP), and inactive glycosyltransferase 25 family member 3 (CERCAM) increased in A vs. Y and C. Conversely, nitrosation levels decreased in C vs. Y and A, for immunoglobulin light chain 1 (IGLC1), serotransferrin (TF), transthyretin (TTR), and vitamin D-binding protein (VDBP). Immunoblottings of alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR) and thioredoxin reductase 1 (TRXR1) indicated lower levels of ADH5 in A vs. Y and C, whereas TRXR1 decreased in A and C in comparison to Y. In conclusion, the study identified putative markers in C of healthy aging and high levels of ADH5/GSNOR that can sustain the denitrosylase activity, promoting longevity.