Cargando…
Monitoring of Corroded and Loosened Bolts in Steel Structures via Deep Learning and Hough Transforms
In this study, a regional convolutional neural network (RCNN)-based deep learning and Hough line transform (HLT) algorithm are applied to monitor corroded and loosened bolts in steel structures. The monitoring goals are to detect rusted bolts distinguished from non-corroded ones and also to estimate...
Autores principales: | Ta, Quoc-Bao, Kim, Jeong-Tae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731320/ https://www.ncbi.nlm.nih.gov/pubmed/33276512 http://dx.doi.org/10.3390/s20236888 |
Ejemplares similares
-
Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on Synthesized Data
por: Ta, Quoc-Bao, et al.
Publicado: (2022) -
Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model
por: Pham, Hai Chien, et al.
Publicado: (2020) -
Correction: Pham et al. Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model. Sensors 2020, 20, 3382
por: Pham, Hai Chien, et al.
Publicado: (2021) -
Image Registration-Based Bolt Loosening Detection of Steel Joints
por: Kong, Xiangxiong, et al.
Publicado: (2018) -
Artificial Intelligence-Based Bolt Loosening Diagnosis Using Deep Learning Algorithms for Laser Ultrasonic Wave Propagation Data
por: Tran, Dai Quoc, et al.
Publicado: (2020)