Cargando…
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
Realistic synthetic data can be useful for data augmentation when training deep learning models to improve seismological detection and classification performance. In recent years, various deep learning techniques have been successfully applied in modern seismology. Due to the performance of deep lea...
Autores principales: | Li, Yuanming, Ku, Bonhwa, Zhang, Shou, Ahn, Jae-Kwang, Ko, Hanseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731344/ https://www.ncbi.nlm.nih.gov/pubmed/33266072 http://dx.doi.org/10.3390/s20236850 |
Ejemplares similares
-
Virtual Scenarios of Earthquake Early Warning to Disaster Management in Smart Cities Based on Auxiliary Classifier Generative Adversarial Networks
por: Ahn, Jae-Kwang, et al.
Publicado: (2023) -
Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information
por: Shin, Hyunhak, et al.
Publicado: (2018) -
Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
por: Lyra, Simon, et al.
Publicado: (2023) -
Robust Data Augmentation Generative Adversarial Network for Object Detection
por: Lee, Hyungtak, et al.
Publicado: (2022) -
Multichannel One-Dimensional Data Augmentation with Generative Adversarial Network
por: Kosasih, David Ishak, et al.
Publicado: (2023)