Cargando…
Classification of Watermelon Seeds Using Morphological Patterns of X-ray Imaging: A Comparison of Conventional Machine Learning and Deep Learning
In this study, conventional machine learning and deep leaning approaches were evaluated using X-ray imaging techniques for investigating the internal parameters (endosperm and air space) of three cultivars of watermelon seed. In the conventional machine learning, six types of image features were ext...
Autores principales: | Ahmed, Mohammed Raju, Yasmin, Jannat, Park, Eunsung, Kim, Geonwoo, Kim, Moon S., Wakholi, Collins, Mo, Changyeun, Cho, Byoung-Kwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731397/ https://www.ncbi.nlm.nih.gov/pubmed/33255997 http://dx.doi.org/10.3390/s20236753 |
Ejemplares similares
-
Near-infrared hyperspectral imaging for online measurement of the viability detection of naturally aged watermelon seeds
por: Yasmin, Jannat, et al.
Publicado: (2022) -
Classification Method for Viability Screening of Naturally Aged Watermelon Seeds Using FT-NIR Spectroscopy
por: Yasmin, Jannat, et al.
Publicado: (2019) -
Estimation of Cold Stress, Plant Age, and Number of Leaves in Watermelon Plants Using Image Analysis
por: Nabwire, Shona, et al.
Publicado: (2022) -
Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli
por: Lee, Hoonsoo, et al.
Publicado: (2017) -
Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging
por: Mo, Changyeun, et al.
Publicado: (2014)