Cargando…
A Semi-Automated Method to Extract Green and Non-Photosynthetic Vegetation Cover from RGB Images in Mixed Grasslands
Green (GV) and non-photosynthetic vegetation (NPV) cover are both important biophysical parameters for grassland research. The current methodology for cover estimation, including subjective visual estimation and digital image analysis, requires human intervention, lacks automation, batch processing...
Autores principales: | Xu, Dandan, Pu, Yihan, Guo, Xulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731437/ https://www.ncbi.nlm.nih.gov/pubmed/33271796 http://dx.doi.org/10.3390/s20236870 |
Ejemplares similares
-
Identification of the Optimal Season and Spectral Regions for Shrub Cover Estimation in Grasslands
por: Soubry, Irini, et al.
Publicado: (2021) -
Extracting Fractional Vegetation Cover from Digital Photographs: A Comparison of In Situ, SamplePoint, and Image Classification Methods
por: Yu, Xiaolei, et al.
Publicado: (2021) -
Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China
por: Ji, Cuicui, et al.
Publicado: (2017) -
Estimation of forage biomass and vegetation cover in grasslands using UAV imagery
por: Théau, Jérôme, et al.
Publicado: (2021) -
SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods
por: Serouart, Mario, et al.
Publicado: (2022)