Cargando…
Post-translational modifications of EZH2 in cancer
Enhancer of zeste homolog 2 (EZH2), as a main component of Polycomb Repressive Complex 2, catalyzes histone H3K27me3 to silence its target gene expression. EZH2 upregulation results in cancer development and poor prognosis of cancer patients. Post-translational modifications (PTMs) are important bio...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731458/ https://www.ncbi.nlm.nih.gov/pubmed/33308321 http://dx.doi.org/10.1186/s13578-020-00505-0 |
Sumario: | Enhancer of zeste homolog 2 (EZH2), as a main component of Polycomb Repressive Complex 2, catalyzes histone H3K27me3 to silence its target gene expression. EZH2 upregulation results in cancer development and poor prognosis of cancer patients. Post-translational modifications (PTMs) are important biological events in cancer progression. PTMs regulate protein conformation and diversity functions. Recently, mounting studies have demonstrated that EZH2 stability, histone methyltransferase activity, localization, and binding partners can be regulated by PTMs, including phosphorylation, O-GlcNAcylation, acetylation, methylation and ubiquitination. However, the detailed molecular mechanisms of the EZH2-PTMs and whether other types of PTMs occur in EZH2 remain largely unclear. This review presents an overview of different roles of EZH2 modification and EZH2-PTMs crosstalk during tumorigenesis and cancer metastasis. We also discussed the therapeutic potential of targeting EZH2 modifications for cancer therapy. |
---|