Cargando…

RETRACTED ARTICLE: Circular RNA hsa_circ_0001829 promotes gastric cancer progression through miR-155-5p/SMAD2 axis

BACKGROUND: Accumulating evidences have shown that circular RNAs (circRNAs) play important roles in regulating the pathogenesis of cancer. However, the role of circRNAs in gastric cancer (GC) remains largely unclear. METHODS: In this study, we identified a novel upregulated circRNA, hsa_circ_0001829...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Qiuling, Dong, Zhijie, Liang, Min, Luo, Yuanwei, Lin, Hai, Lin, Mingzhen, Zhong, Xiu, Yao, Wenxia, Weng, Jinsheng, Zhou, Xinke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731483/
https://www.ncbi.nlm.nih.gov/pubmed/33308284
http://dx.doi.org/10.1186/s13046-020-01790-w
Descripción
Sumario:BACKGROUND: Accumulating evidences have shown that circular RNAs (circRNAs) play important roles in regulating the pathogenesis of cancer. However, the role of circRNAs in gastric cancer (GC) remains largely unclear. METHODS: In this study, we identified a novel upregulated circRNA, hsa_circ_0001829, in chemically induced malignant transformed human gastric epithelial cells using RNA-seq. Subsequent qRT-PCR and ISH assays were performed to detect the expression level of hsa_circ_0001829 in GC cell lines and tissues. Functional roles of hsa_circ_0001829 in GC were then explored by loss- and gain-of- function assays. Bioinformatic prediction and luciferase assay were used to investigate potential mechanisms of hsa_circ_0001829. Finally, the mice xenograft and metastasis models were constructed to assess the function of hsa_circ_0001829 in vivo. RESULTS: We found that hsa_circ_0001829 was significantly upregulated in GC tissues and cell lines. Loss- and gain-of- function assays showed that hsa_circ_0001829 promotes GC cells proliferation, migration and invasion, and the affected cell cycle progression and apoptosis rates may account for the effect of hsa_circ_0001829 on GC proliferation. In addition, bioinformatic prediction and luciferase assay showed that hsa_circ_0001829 acts as a molecular sponge for miR-155-5p and that SMAD2 was a target gene of miR-155-5p; moreover, hsa_circ_0001829 sponges miR-155-5p to regulate SMAD2 expression and hsa_circ_0001829 promotes GC progression through the miR-155-5p–SMAD2 pathway. Finally, suppression of hsa_circ_0001829 expression inhibited tumor growth and aggressiveness in vivo. CONCLUSION: Taken together, our findings firstly demonstrated a novel oncogenic role of hsa_circ_0001829 in GC progression through miR-155-5p–SMAD2 axis, and our study may offer novel biomarkers and therapeutic targets for GC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-020-01790-w.