Cargando…

Naringin increases osteoprotegerin expression in fibroblasts from periprosthetic membrane by the Wnt/β-catenin signaling pathway

BACKGROUND: The osteoclast bone resorption is critical in aseptic loosening after joint replacement. The balance between activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) is considered to play a central role in osteoclast maturation. Fibroblasts from the periprosthetic mem...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chao, Liu, Wei, Zhang, Xianlong, Zeng, Bingfang, Qian, Yebin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731555/
https://www.ncbi.nlm.nih.gov/pubmed/33302980
http://dx.doi.org/10.1186/s13018-020-02145-z
Descripción
Sumario:BACKGROUND: The osteoclast bone resorption is critical in aseptic loosening after joint replacement. The balance between activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) is considered to play a central role in osteoclast maturation. Fibroblasts from the periprosthetic membrane express RANKL and promote osteoclast formation. Studies have demonstrated that naringin inhibited osteoclastogenesis and wear particle-induced osteolysis. In this study, the naringin-induced OPG/RANKL effects and its underlying mechanism were studied in fibroblasts from periprosthetic membrane. METHODS: Fibroblasts were isolated from the periprosthetic membrane during hip arthroplasty for revision due to aseptic loosening. Fibroblasts were cultured and treated with or without naringin and DKK-1 (the classical inhibitor of Wnt/β-catenin signaling pathway). OPG and RANKL mRNA and protein levels, gene expression of β-catenin, and cyclin D1, which participate in the Wnt signaling pathway, were examined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: The mRNA and protein levels of OPG were enhanced by naringin in a dose-dependent manner compared to that of the non-treated control. In contrast, naringin did not affect the expression of RANKL. Importantly, DKK-1 attenuated OPG expression in fibroblasts under naringin treatment. Moreover, naringin stimulated the gene expression of β-catenin and cyclin D1 in fibroblasts, and the effect could be inhibited by DKK-1. CONCLUSION: The results indicated that naringin enhanced OPG expression through Wnt/β-catenin signaling pathway in fibroblasts from periprosthetic membrane, which may be useful to inhibit periprosthetic osteolysis during aseptic loosening after total joint arthroplasty.