Cargando…
Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data
BACKGROUND: The advent of metagenomic sequencing provides microbial abundance patterns that can be leveraged for sample origin prediction. Supervised machine learning classification approaches have been reported to predict sample origin accurately when the origin has been previously sampled. Using m...
Autores principales: | Chen, Julie Chih-yu, Tyler, Andrea D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731568/ https://www.ncbi.nlm.nih.gov/pubmed/33302990 http://dx.doi.org/10.1186/s13062-020-00287-y |
Ejemplares similares
-
Origin Sample Prediction and Spatial Modeling of Antimicrobial Resistance in Metagenomic Sequencing Data
por: Zhelyazkova, Maya, et al.
Publicado: (2021) -
A Systematic Evaluation of Supervised Machine Learning Algorithms for Cell Phenotype Classification Using Single-Cell RNA Sequencing Data
por: Cao, Xiaowen, et al.
Publicado: (2022) -
Supervised Algorithms of Machine Learning for the Prediction of Cervical Cancer
por: F., Asadi, et al.
Publicado: (2020) -
Predictive Supervised Machine Learning Models for Diabetes Mellitus
por: Muhammad, L. J., et al.
Publicado: (2020) -
Large-scale machine learning for metagenomics sequence classification
por: Vervier, Kévin, et al.
Publicado: (2016)