Cargando…
Biologically-informed neural networks guide mechanistic modeling from sparse experimental data
Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approxima...
Autores principales: | Lagergren, John H., Nardini, John T., Baker, Ruth E., Simpson, Matthew J., Flores, Kevin B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732115/ https://www.ncbi.nlm.nih.gov/pubmed/33259472 http://dx.doi.org/10.1371/journal.pcbi.1008462 |
Ejemplares similares
-
Efficient, sparse biological network determination
por: August, Elias, et al.
Publicado: (2009) -
Sparse Computation in Adaptive Spiking Neural Networks
por: Zambrano, Davide, et al.
Publicado: (2019) -
An efficient and accurate solver for large, sparse neural networks
por: Stolyarov, Roman M, et al.
Publicado: (2015) -
Sparse Convolutional Neural Networks for Genome-Wide Prediction
por: Waldmann, Patrik, et al.
Publicado: (2020) -
The Relationship between Sparseness and Energy Consumption of Neural Networks
por: Wang, Guanzheng, et al.
Publicado: (2020)