Cargando…

Neurocognitive dynamics of near-threshold voice signal detection and affective voice evaluation

Communication and voice signal detection in noisy environments are universal tasks for many species. The fundamental problem of detecting voice signals in noise (VIN) is underinvestigated especially in its temporal dynamic properties. We investigated VIN as a dynamic signal-to-noise ratio (SNR) prob...

Descripción completa

Detalles Bibliográficos
Autores principales: Swanborough, Huw, Staib, Matthias, Frühholz, Sascha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732184/
https://www.ncbi.nlm.nih.gov/pubmed/33310844
http://dx.doi.org/10.1126/sciadv.abb3884
Descripción
Sumario:Communication and voice signal detection in noisy environments are universal tasks for many species. The fundamental problem of detecting voice signals in noise (VIN) is underinvestigated especially in its temporal dynamic properties. We investigated VIN as a dynamic signal-to-noise ratio (SNR) problem to determine the neurocognitive dynamics of subthreshold evidence accrual and near-threshold voice signal detection. Experiment 1 showed that dynamic VIN, including a varying SNR and subthreshold sensory evidence accrual, is superior to similar conditions with nondynamic SNRs or with acoustically matched sounds. Furthermore, voice signals with affective meaning have a detection advantage during VIN. Experiment 2 demonstrated that VIN is driven by an effective neural integration in an auditory cortical-limbic network at and beyond the near-threshold detection point, which is preceded by activity in subcortical auditory nuclei. This demonstrates the superior recognition advantage of communication signals in dynamic noise contexts, especially when carrying socio-affective meaning.